東莞永力電業有限公司

YUNG LI CO., LTD

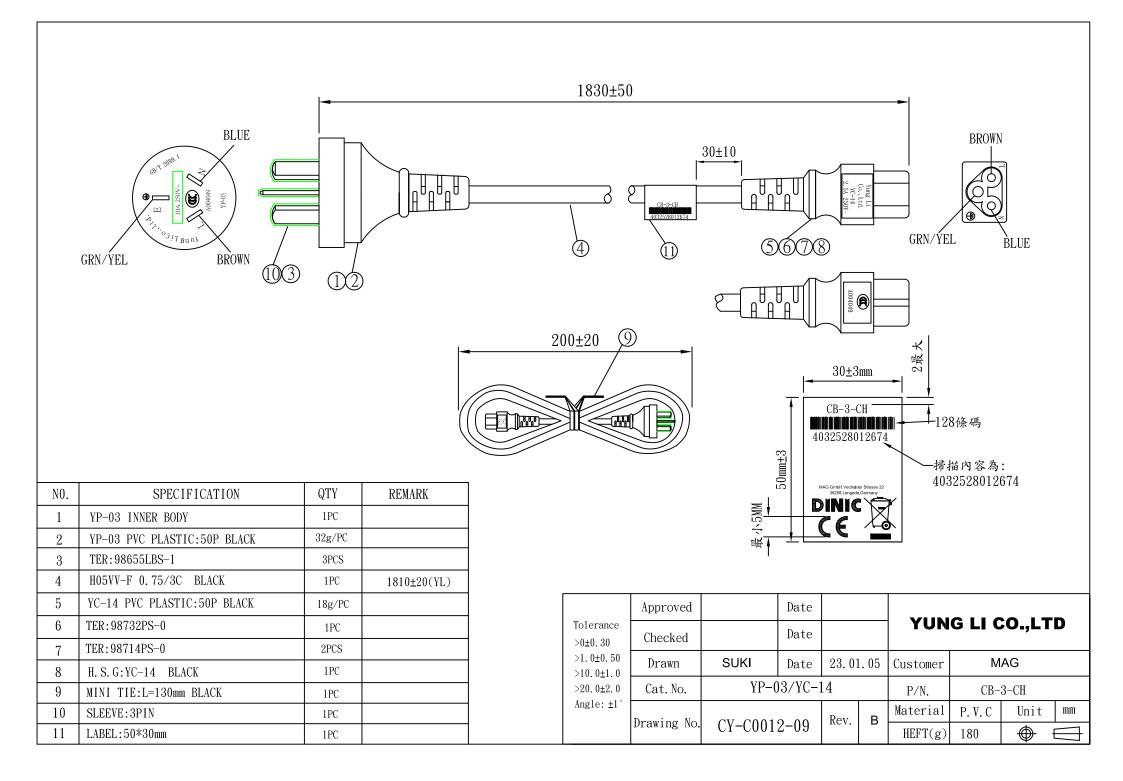
Da Pu Industrial Zone, Gang Zi, Changping Town, Dong Guan City, Guangdong 523571 China.P.R.C

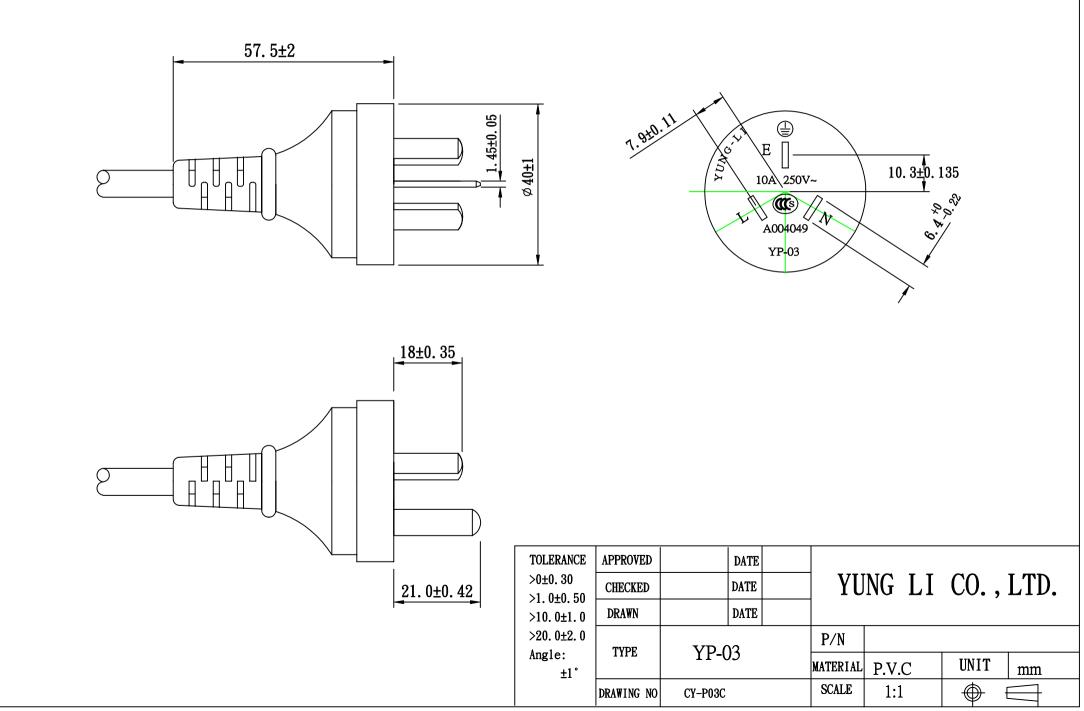
TEL:0769-83396797~8 E-mail: sales@yung-li.com

FAX:0769-83396796

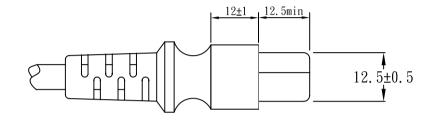
Description: YP-03/YC-14

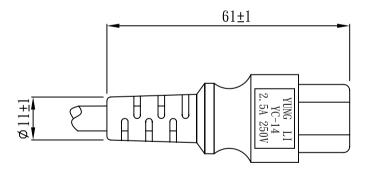
Customer: MAG

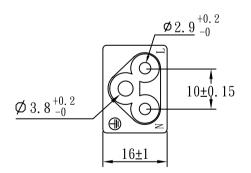

Parts No.:


Draw No.:

REVISION RECORD


1	
2	
3	
4	
5	


YUNG LI		CUSTOMER	APPROVED	
CHECKED	PREPARED BY	CUSIOMER	AFFKUVED	



TOLERANCE	APPROVED		DATE					
>0±0.30 >1.0±0.50	CHECKED		DATE] YUNG LI CO., LTD.			LTD.
>10. 0 ± 0.30 >10. 0 ± 1.0	DRAWN		DATE					
>20. 0±2. 0	TYPE	YC-	1 /		P/N MATERIAL P.V.C UNIT mm			
Angle: ±1°	LIFL	rt-	14				mm	
	DRAWING NO				SCALE	1:1	\	

TYPE	DESCRIPTION	PART NO.	PAGE
YP-03/YC-14	POWER SUPPLY CORD		1 of 5
1 00005			

1. SCOPE:

This specification applies to POWER SUPPLY CORDS which are in compliance with GB2099.1-1996 and GB1002-1996 standards and approved CHINA with approval number as follows:

2. Standard of applicable

No.	Item	Туре	Max. voltages	Max. current	File No.
2.1	Plug	YP-03	250V	10A	
2.2	Connector	YC-14	250V	2.5A	
2.3	Cord	H05VV-F	0.75/3C		

3. TEST CONDITION: This test and measurement, unless otherwise specified shall be carried out at a temperature of 15^oC to 35^oC, relative humidity of 25% to 85%, and atmospheric pressure of 86kpa to 106kpa.

However, when any doubt arises on the judgement value under it the test and measurement shall be carried out at a temperature of $20\pm2^{\circ}$ C, relative humidity of 60% to 70%, and atmospheric pressure of 86kpa to 106kpa.

4.ELECTRICAL PERFORMANCE

NO.	Item	Test condition	Requirement
4-1	Dielectric Withstanding Voltage test	 (a) In this air (20±5°C) AC2000V is applied between a conductor and other conductor for 1 second.(Cut off current 0.3 mA). (b) Immersed in water(20±5°C) AC 1000V is applied between a conductor and other conductor for 1 minute 	No breakage No breakage
4-2	Current and Polarity test	L-L E-E N-N	No problem with Conductor

TYPE		DESCRIPTION	PART NO.	PAGE		
YP-	03/YC-14	POWER SUPPLY CORD		2 of 5		
4. ELEC 4.	4. ELECTRICAL PERFORMANCE 4.					
No.	ITEM	Test conditi	on	Requirement		
4-3	Insulation resistance tes	In the air 20° C~ 60° C DC 500V		5M MIN		
4-4	Conductor resistance tes	In the air 20° C~ 60° C	2	5.1 / km MAX		

5.MECHANICAL PERFORMANCE

NO.	Item	Test condition	Requirement
5-1	Tensile strength (initial sample)	insulation	15LBS/2min
5-2	Deformation test	Exposure to 120±3 [°] C atmosphere for 0.5H Weight 510g	The thickness of sample shall not decrease more than 50%
5-3	Accelerated Aging test	Exposure to 75 ± 2 , atmosphere for 168 hours under natural ventilation.	No crack mucus mark wire exposure short and oppositive polarity.

TYPE	DESCRIPTION	PART NO.	PAGE
YP-03/YC-14	POWER SUPPLY CORD		3 of 5

5. MECHANICAL PERFORMANCE (CODE)

NO.	Item	Test condition	Requirement
5-4	Input & output	It is tested after taking the action of 10time	Applied force is
	Force to connector	input & output.	1~6kg

6. MECHANICAL PERFORMANCE

NO.	Item	Test condition	Requirement
6-1	Pulling out force of conductor	The connector between blade terminal and conductor shall not break under a pull force of 20lbs for 1 minute	Blade can not fall down

TYPE	DESCRIPTION	PART NO.	PAGE
YP-03/YC-14	POWER SUPPLY CORD		4 of 5

6.MECHANICAL PERFORMANCE

	f			equire	nent
of blades		hole sufficiently large just to permit the blades to pass through it a weight than exert 89N force for two minutes is to be supported by each blade in succession.	displa either more	The cement blade than	residu : must 1 2.4n
-		The joint in flexible cord is to be securely support- rated by a rigid flat mounted horizontally, a pull of 133.4N weight for one minute to the flexible cord		loosene	ess
	-	Pulling out	pass through it a weight than exert 89N force for two minutes is to be supported by each blade in succession. Image: state of the state	pass through it a weight than exert 89N force for two minutes is to be supported by each blade in succession. more after load. Image: succession. Image: succession. Image: succession. Image: succession. Image: succession. Image: succession. Image: succession. Image: succession. Image: succession. Image: succession. Image: succession. Image: succession. Image: succession. Image: succession. Image: succession. Image: succession. Image: succession.	pass through it a weight than exert 89N force for two minutes is to be supported by each blade in succession. more than after 2 min load. Image: support of the suppor

ТҮРЕ	DESCRIPTION	PART NO.	PAGE
YP-03/YC-14	POWER SUPPLY CORD		5 of 5

6.MECHANICAL PERFORMANCE

6-4 Bending force The power supply cord division is fixing and load of 1000g is added to a tip of a cable. It is made to do 10000times bending on right and left each 45° (bending speed 60 times/minute)
YC-14 1000g

YUNG LI CO., LTD SPECIFICATION

Yung Li	Style		Document No	
	Style			
2005.09.23		PVC FLEXIBLE CORDS		
Edition	Q:		Page	
A Size		H05VV-F 3G 0.75mm ²	1/2	
		- -	L	
1. Standard: IEC	C 227 I	EC228		
2. Construction &	z Dimen	ision		
		Item	Specification 2	
		Size	3G 0.75mm ²	
Conductor		Material	Annealed Bare Copper	
		Construction	24/ 0.202±0.01	
		Material	PVC	
		Minimum Average Thickness	0.60mm	
Insulation		Minimum Thickness at any point	0.44mm	
		Diameter	2.35 ± 0.10	
		Identification	Blue,Brown,Yellow/Green	
		Core Twist	3-Core	
Core Assembly	1	Filler	NA	
		Assembly Pair	NA	
Taping		Mylar Foil	NA	
Shielded		A1-Mylar Foil	NA	
Drain	. Material		NA	
Drain		Construction	NA	
		Material	NA	
		Minimum Average Thickness	0.8mm	
Jacket		Minimum Thickness at any point	0.58mm	
		Overall Diameter(Approx)	6.7 ± 0.15	
		Color		
Marking:		Color	Any Color	

Marking:

YUNG LI H05VV-F 3G 0.75mm² \lhd VDE \triangleright NF-USE 1347 (NF) KEMA-KEUR \triangle CEBEC \lhd \heartsuit \triangleright \bigcirc (F) (N)(S) ($\frac{1}{5}$) IEMMEQU Q04083 ((C A004049 227 IEC 53 RVV 300/500V (C KTL SU01027-4002))

YUNG LI CO., LTD SPECIFICATION

Yung Li				Document No	
2005.09.23	Style	PVC FLEXIBLE COR	RDS		
Edition	Size	H05VV-F 3G 0.75mm ²		Page	
А				2/2	
4.Electrical &	& Physical P	roperties			
	Item			Specification	
Rating Volta	ge		70 300	/500V	
Conductor re	sistance(AT	20)	26.0 /Kr	m MAX	
Insulation Re	esistance(AT	70)	0.011M	/Km Min	
Dielectric St	rength		AC 2.0 K	V / 15 min No Brcak	
Spark Test	r	Γ	5.0KV		
	Unaged	Tensile Strength	1.02 kgf/n	nm ² min	
	Elongation	150% Mir	n		
Insulation	Aged	Tensile Strength	80~120% (80 x168hrs)		
Ageu	ngeu	Elongation	80~120% (80 x168hrs)		
Loss of mass Test		ss Test	2.0mg/cm^2 (max)		
	Unaged	Tensile Strength	1.02 kgf/mm ² min		
	Unaged	Elongation	150% Mir	n	
Jacket	Aged	Tensile Strength	80~120%	(80 x168hrs)	
	Ageu	Elongation	80~120%	(80 x168hrs)	
Loss of mass Test		s Test	2.0mg/cm^2 (max)		
Deformation	Test		70±4 X	K 1hr 50%	
Cold Bend T	est		-15 x 4hr No Crack		
Heat Shock 7	ſest		150±2 x 1hr No Crack		
Graph:		PVC JACKET	[緣)		

中国国家强制性产品认证证书

证书编号: 2007010101249048

委托人名称、地址

东莞永力电业有限公司 东莞市常平镇岗梓大埔工业区

生产者(制造商)名称、地址

东莞永力电业有限公司

生产企业名称、地址

东莞永力电业有限公司 东莞市常平镇岗梓大埔工业区

产品名称和系列、规格、型号

电线组件

YP-03 10A 250V~+YC-14 2.5A 250V~(配60227IEC53 3×0.75平方毫米,60227IEC53 3×1平方毫米),YP-03 10A 250V~+YC-14L 2.5A 250V~(配60227IEC53 3×0.75平方 毫米,60227IEC53 3×1平方毫米),YP-03L 10A 250V~+YC-14L 2.5A 250V~(配 60227IEC53 3×0.75平方毫米,60227IEC53 3×1平方毫米),YP-03L 10A 250V~+YC-14 2.5A 250V~(配60227IEC53 3×0.75平方毫米,60227IEC53 3×1平方毫米)

产品标准和技术要求

GB15934-2008

上述产品符合强制性产品认证实施规则 CNCA-C02-01:2014的要求,特发此证。

发证日期: 2014年11月14日 有效期至: 2019年11月14日

证书有效期内本证书的有效性依据发证机构的定期监督获得保持。

本证书为变更证书,证书首次颁发日期: 2007年09月27日 本证书的相关信息可通过国家认监委网站www.cnca.gov.cn查询

Ŧ 仟·

中国・北京・南四环西路 188 号 9 区 100070 http://www.cqc.com.cn

CERTIFICATE FOR CHINA COMPULSORY PRODUCT CERTIFICATION

No. : 2007010101249048

NAME AND ADDRESS OF THE APPLICANT

Yung Li Co., Ltd. Dapu Industrial Zone, Gangzi, Changping Town, Dongguan

NAME AND ADDRESS OF THE MANUFACTURER

Yung Li Co., Ltd.

Dapu Industrial Zone, Gangzi, Changping Town, Dongguan

NAME AND ADDRESS OF THE FACTORY

Yung Li Co.,Ltd. Dapu Industrial Zone, Gangzi, Changping Town, Dongguan

NAME, MODEL AND SPECIFICATION

Cord set

YP-03 10A 250V~+YC-14 2.5A 250V~(配60227IEC53 3×0.75平方毫米,60227IEC53 3×1平方毫米),YP-03 10A 250V~+YC-14L 2.5A 250V~(配60227IEC53 3×0.75平方 毫米,60227IEC53 3×1平方毫米),YP-03L 10A 250V~+YC-14L 2.5A 250V~(配 60227IEC53 3×0.75平方毫米,60227IEC53 3×1平方毫米),YP-03L 10A 250V~+YC-14 2.5A 250V~(配60227IEC53 3×0.75平方毫米,60227IEC53 3×1平方毫米)

THE STANDARDS AND TECHNICAL REQUIREMENTS FOR THE PRODUCTS

GB15934-2008

This is to certify that the above mentioned products have met the requirements of implementation rules for compulsory certification(REF NO. CNCA-C02-01:2014).

Date of issue: Nov. 14, 2014 Date of expiry: Nov. 14, 2019

Validity of this certificate is subject to positive result of the regular follow up inspection by issuing certification body until the expiry date.

Date of original certification: Sep. 27, 2007

This certificate can be verified through CNCA's website: www.cnca.gov.cn

President:

Wang Kejiao

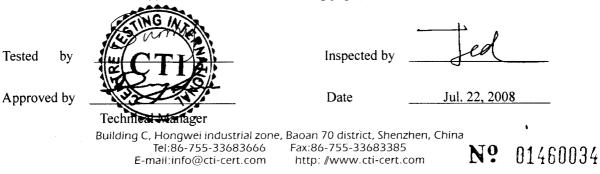
CHINA QUALITY CERTIFICATION CENTRE

Section 9,No.188,Nansihuan Xilu, Beijing 100070 P.R.China http://www.cqc.com.cn

Report No.:SZR08060626601-B

Page 1 of 13

Applicant : YUNG LI CO., LTD.


Address :DA PU INDUSTRIAL ZONE, GANG ZI, CHANG PING TOWN, DONGGUAN CITY, GUANGDONG 523571 CHINA

Report on the submitted sample(s) said to be:

-	• • • • • • • • • • • • • • • • • • • •			
No.	Sample Names	Sample Description		
1	PVC BLACK	Black plastic grains		
2	PVC WHITE	White plastic grains		
3	PVC BROWN	Brown plastic grains		
4	PVC BLUE	Blue plastic grains		
5	PVC YELLOW	Yellow plastic grains		
6	PVC GREEN	Green plastic grains		
7	PVC RED	Red plastic grains		
8	PVC ORANGE	Orange plastic grains		
9	INNERBODY	White plastic		
10	INNERBODY	Beige-white plastic		
11	COPPER ALLOY	Golden color metal base		
12	COPPER	Cupreous color metal wire		

Part No.	:Please refer to the attached page
Sample Received Date	:Jun. 6, 2008
Testing Period	:Jun. 6, 2008 to Jun. 17, 2008
Test Requested	 :1.As specified by client, for sample No.1, 2, 3, 4, 5, 6, 7, 8, 9, 10, to determine the Lead, Mercury, Cadmium, Hexavalent Chromium, Perfluorooctane Sulfonates, Bisphenol-A, Di-2-ethylhexyl phthalate, Tetrabromobisphenol-A, Hexabromocyclododecane, Polycyclic Aromatic Hydrocarbons(PAHs), PBBs&PBDEs content in the submitted sample. 2. As specified by client, for sample No.11,12, to determine the Lead, Mercury, Cadmium and Hexavalent Chromium content in the submitted sample.

Test Method/Test Result(s): Please refer to the following page(s).

080)25-3

Test Report

Report No.:SZR08060626601-B Test Method: Page 2 of 13

Tastad Itam(a)	Pretreatment Method	Measured	Report
Tested Item(s)	Freureaument Method	Equipment(s)	Limit
Lead (Pb)	Refer to US EPA 3052:1996	ICP-AES	2ppm
Mercury (Hg)	Refer to US EPA 3052:1996	CV- AA	2ppm
	Refer to EN 1122:2001 method B		
Cadmium (Cd)	Refer to US EPA 3050B:1996	ICP-AES	2ppm
	or other acid digestion		
Hexavalent Chromium (Cr ⁶⁺)	Refer to US EPA 3060A:1996	UV-Vis	2ppm
Perfluorooctane Sulfonates (PFOS)	Refer to US EPA 3550C	LC-MS-MS	5ppm
Bisphenol-A(BP-A)	Refer to ISO 8974:2002	HPLC	5ppm
Di-2-ethylhexyl phthalate (DEHP)	Refer to ASTM D3421	GC-MSD	50ppm
Tetrabromobisphenol-A (TBBP-A)	Refer to DIN 53313	GC-MSD	5ppm
Hexabromocyclododecane (HBCD)	Refer to US EPA 3540C:1996	GC-MSD	5ppm
Polycyclic Aromatic Hydrocarbons (PAHs)	Refer to US EPA 8270D	GC-MSD	0.1ppm
Polybrominated Biphenyls (PBBs)	Refer to US EPA 3540C:1996	GC-MSD	5ppm
Polybrominated Diphenyl Ethers (PBDEs)	Refer to US EPA 3540C:1996	GC-MSD	5ppm

Test Result(s):

	Content			
Tested Item(s)	Sample No.1	Sample No.2	Sample No.3	
Lead (Pb)	N.D.	N.D.	N.D.	
Mercury (Hg)	N.D.	N.D.	N.D.	
Cadmium (Cd)	N.D.	N.D.	N.D.	
Hexavalent Chromium (Cr ⁶⁺)	N.D.	N.D.	N.D.	
Perfluorooctane Sulfonates (PFOS)	N.D.	N.D.	N.D.	
Bisphenol-A(BP-A)	N.D.	N.D.	23ppm	
Di-2-ethylhexyl phthalate (DEHP)	121ppm	133ppm	339ppm	
Tetrabromobisphenol-A (TBBP-A)	N.D.	N.D.	N.D.	
Hexabromocyclododecane (HBCD)	N.D.	N.D.	N.D.	

Test Report

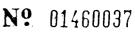
Report No.:SZR08060626601-B Test Result(s): Page 3 of 13

	Content			
Tested Item(s)	Sample No.4	Sample No.5	Sample No.6	
Lead (Pb)	N.D.	N.D.	N.D.	
Mercury (Hg)	N.D.	N.D.	N.D.	
Cadmium (Cd)	N.D.	N.D.	N.D.	
Hexavalent Chromium (Cr ⁶⁺)	N.D.	N.D.	N.D.	
Perfluorooctane Sulfonates (PFOS)	N.D.	N.D.	N.D.	
Bisphenol-A(BP-A)	N.D.	20ppm	N.D.	
Di-2-ethylhexyl phthalate (DEHP)	151ppm	214ppm	151ppm	
Tetrabromobisphenol-A (TBBP-A)	N.D.	N.D.	N.D.	
Hexabromocyclododecane (HBCD)	N.D.	N.D.	N.D.	

	Content			
Tested Item(s)	Sample No.7	Sample No.8	Sample No.9	
Lead (Pb)	N.D.	N.D.	N.D.	
Mercury (Hg)	N.D.	N.D.	N.D.	
Cadmium (Cd)	N.D.	N.D.	N.D.	
Hexavalent Chromium (Cr ⁶⁺)	N.D.	N.D.	N.D.	
Perfluorooctane Sulfonates (PFOS)	N.D.	N.D.	N.D.	
Bisphenol-A(BP-A)	N.D.	N.D.	N.D.	
Di-2-ethylhexyl phthalate (DEHP)	115ppm	196ppm	N.D.	
Tetrabromobisphenol-A (TBBP-A)	N.D.	N.D.	N.D.	
Hexabromocyclododecane (HBCD)	N.D.	N.D.	N.D.	

	Content			
Tested Item(s)	Sample No.10	Sample No.11	Sample No.12	
Lead (Pb)	N.D.	18410ppm	8ppm	
Mercury (Hg)	N.D.	N.D.	N.D.	
Cadmium (Cd)	N.D.	N.D.	N.D.	
Hexavalent Chromium (Cr ⁶⁺)	N.D.	N.D.	N.D.	
Perfluorooctane Sulfonates (PFOS)	N.D.	/	/	
Bisphenol-A(BP-A)	16ppm	/	/	
Di-2-ethylhexyl phthalate (DEHP)	N.D.	. /	/	
Tetrabromobisphenol-A (TBBP-A)	N.D.	1	1	
Hexabromocyclododecane (HBCD)	N.D.	1	1.	

Tel:86-755-33683666 Fax:86-755 E-mail:info@cti-cert.com http://ww


Fax:86-755-33683385 http://www.cti-cert.com **N?** 01460036

Test Report

Report No.:SZR08060626601-B Test Result(s): Page 4 of 13

Tested Item (a)	Content					
Tested Item(s)	Sample No.1	Sample No.2	Sample No.3	Sample No.4		
Polycylic Aromatic Hydro	ocarbons(PAHs)	· · ·				
Naphthalene	N.D.	N.D.	N.D.	N.D.		
Acenaphthene	N.D.	N.D.	N.D.	N.D.		
Acenaphthylene	N.D.	N.D.	N.D.	N.D.		
Fluorene	N.D.	N.D.	N.D.	N.D.		
Phenanthrene	N.D.	N.D.	N.D.	N.D.		
Anthracene	N.D.	N.D.	N.D.	N.D.		
Fluoranthene	N.D.	N.D.	N.D.	N.D.		
Pyrene	N.D.	N.D.	N.D.	N.D.		
Benzo[a]anthracene	N.D.	N.D.	N.D.	N.D.		
Chrysene	N.D.	N.D.	N.D.	N.D.		
Benzo[b]fluoranthene	N.D.	N.D.	N.D.	N.D.		
Benzo[k]fluoranthene	N.D.	N.D.	N.D.	N.D.		
Benzo[a]pyrene	N.D.	N.D.	N.D.	N.D.		
Indenol[1,2,3-cd]pyrene	N.D.	N.D.	N.D.	N.D.		
Dibenz[a,h]anthracene	N.D.	N.D.	N.D.	N.D.		
Benzo[g,h,i]perylene	N.D.	N.D.	N.D.	N.D.		

Test Report

Report No.:SZR08060626601-B Test Result(s): Page 5 of 13

	Content					
Tested Item(s)	Sample No.5	Sample No.6	Sample No.7	Sample No.8		
Polycylic Aromatic Hydro	ocarbons(PAHs)		•			
Naphthalene	0.7ppm	0.4ppm	0.4ppm	N.D.		
Acenaphthene	N.D.	N.D.	N.D.	N.D.		
Acenaphthylene	N.D.	N.D.	N.D.	N.D.		
Fluorene	N.D.	N.D.	N.D.	N.D.		
Phenanthrene	N.D.	N.D.	N.D.	N.D.		
Anthracene	N.D.	N.D.	N.D.	N.D.		
Fluoranthene	N.D.	N.D.	N.D.	N.D.		
Pyrene	N.D.	N.D.	N.D.	N.D.		
Benzo[a]anthracene	N.D.	N.D.	N.D.	N.D.		
Chrysene	N.D.	N.D.	N.D.	N.D.		
Benzo[b]fluoranthene	N.D.	N.D.	N.D.	N.D.		
Benzo[k]fluoranthene	N.D.	N.D.	N.D.	N.D.		
Benzo[a]pyrene	N.D.	N.D.	N.D.	N.D.		
Indenol[1,2,3-cd]pyrene	N.D.	N.D.	N.D.	N.D.		
Dibenz[a,h]anthracene	N.D.	N.D.	N.D.	N.D.		
Benzo[g,h,i]perylene	N.D.	N.D.	N.D.	N.D.		

Building C, Hongwei industrial zone, Baoan 70 district, Shenzhen, China Tel:86-755-33683666 E-mail:info@cti-cert.com Fax:86-755-33683385 http://www.cti-cert.com

Report No.:SZR08060626601-B Test Result(s): Page 6 of 13

01460039

Tracka d Idama(a)	Content						
Tested Item(s)	Sample No.9	Sample No.10					
Polycylic Aromatic Hydrocarbons(PAHs)							
Naphthalene	N.D.	N.D.					
Acenaphthene	N.D.	N.D.					
Acenaphthylene	N.D.	N.D.					
Fluorene	N.D.	N.D.					
Phenanthrene	N.D.	N.D.					
Anthracene	N.D.	N.D.					
Fluoranthene	N.D.	N.D.					
Pyrene	N.D.	1.3ppm					
Benzo[a]anthracene	N.D.	N.D.					
Chrysene	N.D.	N.D.					
Benzo[b]fluoranthene	N.D.	N.D.					
Benzo[k]fluoranthene	N.D.	N.D.					
Benzo[a]pyrene	N.D.	N.D.					
Indenol[1,2,3-cd]pyrene N.D.		N.D.					
Dibenz[a,h]anthracene	N.D.	N.D.					
Benzo[g,h,i]perylene	N.D.	N.D.					

Building C, Hongwei industrial zone, Baoan 70 district, Shenzhen, China Tel:86-755-33683666 Fax:86-755-33683385 E-mail:info@cti-cert.com http://www.cti-cert.com

CTL

Test Report

Report No.:SZR08060626601-B Test Result(s): Page 7 of 13

01460040

Nº

Tested Item(s)	Content					
Tested Item(s)	Sample No.1	Sample No.2	Sample No.3	Sample No.4		
Polybrominated Biphenyls(PBB	s)	• • • • • • • • • • • • • • • • • • • •	• • • •			
Monobromobiphenyl	N.D.	N.D.	N.D.	N.D.		
Dibromobiphenyl	N.D.	N.D.	N.D.	N.D.		
Tribromobiphenyl	N.D.	N.D.	N.D.	N.D.		
Tetrabromobiphenyl	N.D.	N.D.	N.D.	N.D.		
Pentabromobiphenyl	N.D.	N.D.	N.D.	N.D.		
Hexabromobiphenyl	N.D.	N.D.	N.D.	N.D.		
Heptabromobiphenyl	N.D.	N.D.	N.D.	N.D.		
Octabromobiphenyl	N.D.	N.D.	N.D.	N.D.		
Nonabromobiphenyl	N.D.	N.D.	N.D.	N.D.		
Decabromobiphenyl	N.D.	N.D.	N.D.	N.D.		
Polybrominated Diphenyl Ether	s(PBDEs)	••••••••••••••••••••••••••••••••••••••		·		
Monobromodiphenyl ether	N.D.	N.D.	N.D.	N.D.		
Dibromodiphenyl ether	N.D.	N.D.	N.D.	N.D.		
Tribromodiphenyl ether	N.D.	N.D.	N.D.	N.D.		
Tetrabromodiphenyl ether	N.D.	N.D.	N.D.	N.D.		
Pentabromodiphenyl ether	N.D.	N.D.	N.D.	N.D.		
Hexabromodiphenyl ether	N.D.	N.D.	N.D.	N.D.		
Heptabromodiphenyl ether	N.D.	N.D.	N.D.	N.D.		
Octabromodiphenyl ether	N.D.	N.D.	N.D.	N.D.		
Nonabromodiphenyl ether	N.D.	N.D.	N.D.	N.D.		
Decabromodiphenyl ether	N.D.	N.D.	N.D.	N.D.		

Building C, Hongwei industrial zone, Baoan 70 district, Shenzhen, China Tel:86-755-33683666 Fax:86-755-33683385 E-mail:info@cti-cert.com http: //www.cti-cert.com

Test Report

Report No.:SZR08060626601-B Test Result(s): Page 8 of 13

01460041

	Content					
Tested Item(s)	Sample No.5	Sample No.6	Sample No.7	Sample No.8		
Polybrominated Biphenyls(PB	Bs)	••••••••••••••••••••••••••••••••••••••	·	•••••		
Monobromobiphenyl	N.D.	N.D.	N.D.	N.D.		
Dibromobiphenyl	N.D.	N.D.	N.D.	N.D.		
Tribromobiphenyl	N.D.	N.D.	N.D.	N.D.		
Tetrabromobiphenyl	N.D.	N.D.	N.D.	N.D.		
Pentabromobiphenyl	N.D.	N.D.	N.D.	N.D.		
Hexabromobiphenyl	N.D.	N.D.	N.D.	N.D.		
Heptabromobiphenyl	N.D.	N.D.	N.D.	N.D.		
Octabromobiphenyl	N.D.	N.D.	N.D.	N.D.		
Nonabromobiphenyl	N.D.	N.D.	N.D.	N.D.		
Decabromobiphenyl	N.D.	N.D.	N.D.	N.D.		
Polybrominated Diphenyl Eth	ers(PBDEs)					
Monobromodiphenyl ether	N.D.	N.D.	N.D.	N.D.		
Dibromodiphenyl ether	N.D.	N.D.	N.D.	N.D.		
Tribromodiphenyl ether	N.D.	N.D.	N.D.	N.D.		
Tetrabromodiphenyl ether	N.D.	N.D.	N.D.	N.D.		
Pentabromodiphenyl ether	N.D.	N.D.	N.D.	N.D.		
Hexabromodiphenyl ether	N.D.	N.D.	N.D.	N.D.		
Heptabromodiphenyl ether	N.D.	N.D.	N.D.	N.D.		
Octabromodiphenyl ether	N.D.	N.D.	N.D.	N.D.		
Nonabromodiphenyl ether	N.D.	N.D.	N.D.	N.D.		
Decabromodiphenyl ether	N.D.	N.D.	N.D.	N.D.		

Test Report

Report No.:SZR08060626601-B Test Result(s): Page 9 of 13

Nº

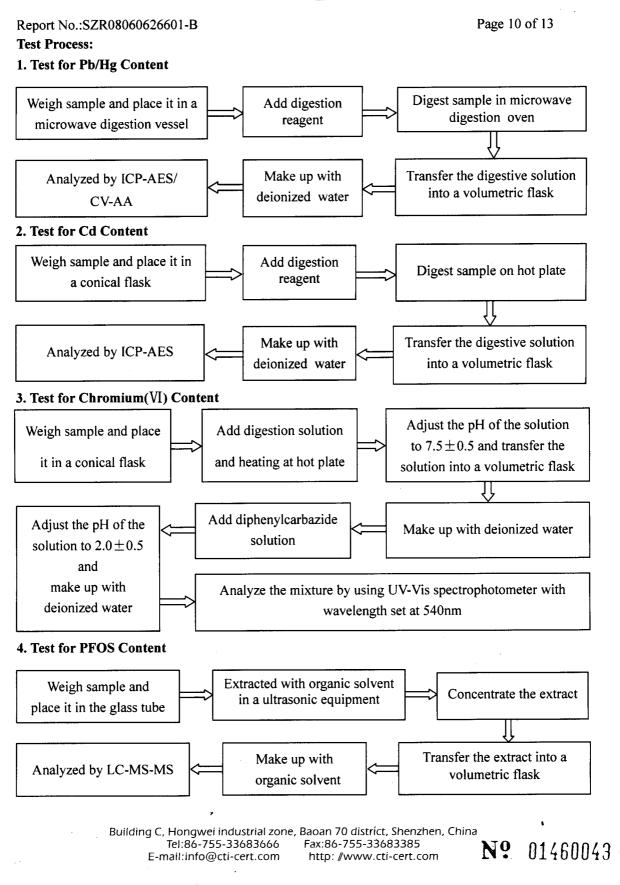
01460042

	Content				
Tested Item(s)	Sample No.9	Sample No.10			
Polybrominated Biphenyls(PBBs)					
Monobromobiphenyl	N.D.	N.D.			
Dibromobiphenyl	N.D.	N.D.			
Tribromobiphenyl	N.D.	N.D.			
Tetrabromobiphenyl	N.D.	N.D.			
Pentabromobiphenyl	N.D.	N.D.			
Hexabromobiphenyl	N.D.	N.D.			
Heptabromobiphenyl	N.D.	N.D.			
Octabromobiphenyl	N.D.	N.D.			
Nonabromobiphenyl	N.D.	N.D.			
Decabromobiphenyl	N.D.	N.D.			
Polybrominated Diphenyl Ethers(PBDEs)				
Monobromodiphenyl ether	N.D.	N.D.			
Dibromodiphenyl ether	N.D.	N.D.			
Tribromodiphenyl ether	N.D.	N.D.			
Tetrabromodiphenyl ether	N.D.	N.D.			
Pentabromodiphenyl ether	N.D.	N.D.			
Hexabromodiphenyl ether	N.D.	N.D.			
Heptabromodiphenyl ether	N.D.	N.D.			
Octabromodiphenyl ether	N.D.	N.D.			
Nonabromodiphenyl ether	N.D.	N.D.			
Decabromodiphenyl ether	N.D.	N.D.			

Note: -N.D. = Not Detected (<report limit)

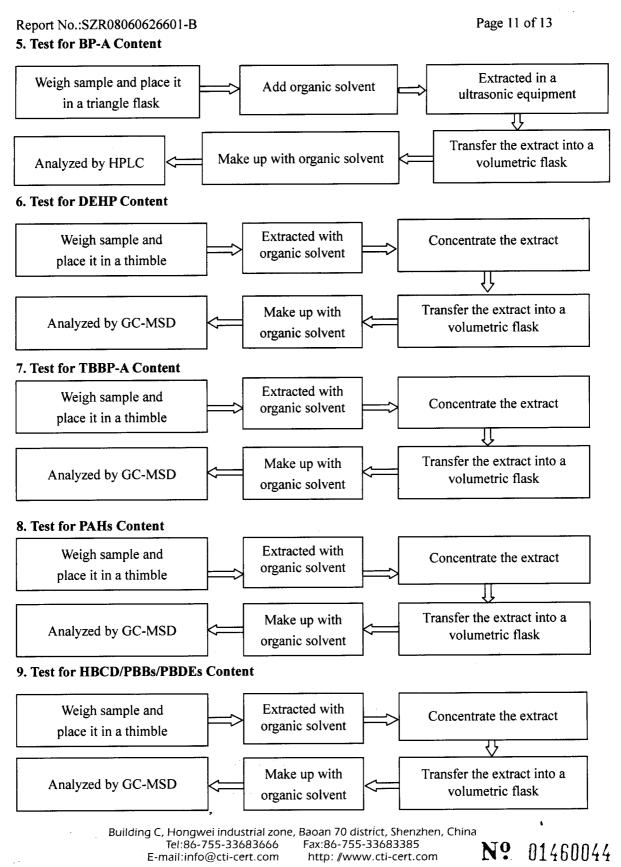
-ppm = mg/kg=parts per million

Remark: 1.The test results of the samples of No.1, 2, 3, 4, 5, 6, 7, 8, 12 of this report copy from the test results of the samples of No.1, 2, 3, 4, 5, 6, 7, 8, 9 of the test report(Report No.SZR08060626602).


2. The test results of Bisphenol-A of Sample No.5 copy from the test report (Report No.RLSZA000020790001).

3. This report is amended base on the test report No.SZR08060626601-A.

Building C, Hongwei industrial zone, Baoan 70 district, Shenzhen, China Tel:86-755-33683666 Fax:86-755-33683385 E-mail:info@cti-cert.com http://www.cti-cert.com

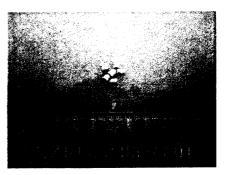


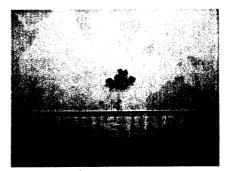
Report No.:SZR08060626601-B

Page 12 of 13

Photos of the samples

Sample No.1


Sample No.3


Sample No.5

Sample No.2

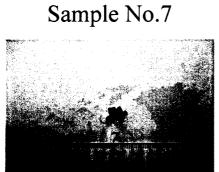
Sample No.4

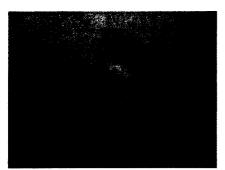
Sample No.6

01460045

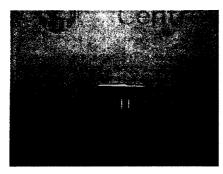
Nº.

Building C, Hongwei industrial zone, Baoan 70 district, Shenzhen, China Tel:86-755-33683666 Fax:86-755-33683385 E-mail:info@cti-cert.com http: //www.cti-cert.com




Photos of the samples

Report No.:SZR08060626601-B


Page 13 of 13

Sample No.9

Sample No.11

Sample No.8

Sample No.10

Sample No.12

01460439

No

*** End of report ***

This report is considered invalidated without the Special Seal for Inspection of the CTI, This report shall not be altered, increased or deleted. The results shown in this test report refer only to the sample(s) tested. Without written approval of CTI, this test report shall not be copied except in full and published as advertisement.

Building C, Hongwei industrial zone, Baoan 70 district, Shenzhen, China Tel:86-755-33683666 Fax:86-755-33683385 E-mail:info@cti-cert.com http: //www.cti-cert.com

Attached Page

Part No.:

.

YL-0312	YL-0213	YL-1214	YL-8115	YL-2121	YL-0222	YL-1223	YL-2135	YCM-001
YL-1212L	YL-1113	YL-1214L	YL-0315	YL-2121L	YL-1122	YL-0323	YL-21K35	YCM-002
YL-2112	YL-1113L	YL-2214	YL-21K15	YL-21K21	YL-1122L	YL-21K23	YL-4535	YCM-003
YL-2112L	YL-1113A	YL-3114	YL-2215	YL-21K21L	YL-21K22	YL-2623	YL-6035	YCM-004
YL-21K12	YL-2113A	YL-3214	YL-2215L	YL-3621	YL-2622	YL-3223	YL-8035	YCM-005
YL-2212	YL-2113	YL-3514	YL-2615	YL-3621L	YL-3522	YL-3523	YL-150	SR
YL-2212L	YL-2113L	YL-4514	YL-3215	YL-8021	YL-3622	YL-4523	YL-150A	YD-05
YL-3112	YL-21K13	YL-4614	YL-3415	YL-6021	YL-3622L	YL-4623	YL-2600	YD-06
YL-3412	YL-3213	YL-6014	YL-3515	YL-6021L	YL-8022	YL-4823	YL-4600	YD-07
YL-3512	YL-3413	YL-6014L	YL-4515	YL-8121	YL-6022	YL-6023	YL-4500	YD-09
YL-3512L	YL-3613	YL-0314	YL-4615	YL-4821	YL-6022L	YL-8123	YL-8100	YD-10
YL-4512	YL-3613L	YL-21K14	YL-8015	YL -92 1	YL-8122	YL-8023	YL-2161	YD-11
YL-4612	YL-3613A	YL-344	YL-6015	YL -92 1A	YL-1245	YL-223	YD-17	YD-12
YL-6012	YL-6013	YL-6015L	YL-315	YL-2300	YL-1246	YL-4645	YD-18	YD-13
YL-6012L	YL-6013L	YL-915	YL-2661	YL-6100	YL-2245	YL-6145	YD-19	YD-14
YL-212	YL-8113	YL-915A	YL-1861	YP-1200	YL-2246	YL-6146	YD-20	YD-15
YL-312	YL-8013L	YL-916	YL-3561	YL-1800	YL-4546	YL-2361	YD-21	YD-16
YP-01	YP-14	YP-32L	YP-65	YP-13HB	YC-01	YC-14	YD-22	YD-23
YP-02	YP-15	YP-33	YP-66	YP-13Q	YC-04	YC-14L	YC-13E	YD-24
YP-02L	YP-15G	YP-34	YP-67	YP-13U	YC-05	YC-14G	YC-13LG	YD-25
YP-03	YP-16	YP-35	YP-68L	YP-13D	YC-05-1	YC-14S	YC-13D	YD-26
YP-03L	YP-16L	YP-36	YP-69L	YP-27	YC-05A	YC-15	YC-13S	YD-27
YP-04	YP-17L	YP-37	YP-71	YP-28	YC-06	YC-16	YC-13G	YD-28

Building C, Hongwei industrial zone, Baoan 70 district, Shenzhen, China Tel:86-755-33683666 E-mail:info@cti-cert.com \$

۲

Part No.:

YP-05	YP-17	YP-38	YP-72L	YP-29	YC-07W	YC-17	YC-56	YD-29
YP-06	YP-18	YP-39	YP-73L	YP-30	YC-08	YC-18	YC-58	YD-30
YP-07	YP-18L	YP-40	YP-74L	YP-31	YC-09	YC-18L	YC-59	YP-13T
YP-08	YP-18N	YP-42	YP-75L	YP-32	YC-10	YC-19	YC-72	
YP-09	YP-18B	YP-45	YP-76	YP-13	YC-11	YC-20	YC-73	
YP-11	YP-18A	YP-46	YP-77	YP-13BL	YC-12	YC-21	YP-58N	
YP-11W	YP-18T	YP-47	YP-78	YP-13L	YC-12G	YC-21A	YP-59	
YP-11C	YP-19	YP-48	YP-79	YP-13C	YC-12A	YC-22	YP-60L	
YP-11L	YP-19L	YP-49	YP-80	YP-13S	YC-12L	YC-23	YP-61	
YP-11A	YP-20	YP-50	YP-81	YP-13H	YC-12T	YC-25	YP-62	
YP-12	YP-21	YP-51	YP-90L	YP-13HP	YC-12C	YC-25L	YP-63	
YP-12C	YP-21K	YP-52	YP-91L	YP-23	YC-13	YC-35	YP-64	
YP-12L	YP-21A	YP-53	YP-92L	YP-23K	YC-13BL	YC-45	YP-98L	
YP-12A	YP-21S	YP-54	YP-93L	YP-24	YC-13L	YC-46	YP-99L	
YP-12G	YP-21C	YP-55	YP-94L	YP-24K	YC-13C	YC-52	YP-13Y	
YP-12P	YP-21T	YP-56	YP-95L	YP-24L	YC-13W	YC-53	YP-13N	
YP-12E	YP-22	YP-57	YP-96L	YP-25	YC-13A	YC-54	YP-13M	
YP-12N	YP-22K	YP-58	YP-97L	YP-26	YC-13B	YC-55	YP-13P	

7

Nº 01460369

\$

r

۴

4

Part No.:

SVT, SVTO, SJT, SJTW	SPT-1, NISPT-1	VCTF, HVCTF	H05VV-F, H03VV-F
SJTO, SJTOW, SJTOOW	SPT-2, NISPT-2	VCTFK, HVCTFK	H05VVH2-F
ST, STW, STOW, STOO	SPT-3, NISPT-3	VFF, HVFF, VSF	H03VVH2-F
STO, SO, SOW, SJ	SRDT, DRT	VCT, HVCT	H05V2V2-F
SOOW, S, SOO, SJOO	1015, 1007, 1061,		H03V2V2-F
SJO, SJOW, SJOOW	1728, 1185, 2468,		H05V2V2H2-F
	2464		H03V2V2H2-F

Building C, Hongwei industrial zone, Baoan 70 district, Shenzhen, China Tel:86-755-33683666 Fax:86-755-33683385 E-mail:info@cti-cert.com http: //www.cti-cert.com Nº 01460370 E-mail:info@cti-cert.com

7

No. CANEC0800459703

Date: 01 Mar 2008

• Page 1 of 6

YONGHAO ELECTRICYTY INDUSTRY CO., LTD DONGGUAN SHI CHANGAN ZHEN SHA TOU SHA QU JING HAI XI LU CHINA

The following sample(s) was/were submitted and identified on behalf of the clients as : PE 黑色扎带

SC Da	SS Job No. SS Internal Reference No. Ite of Sample Received Sting Period	; ; ;	10851727 - SZ 6.3 26 Feb 2008 26 Feb 2008 - 29 Feb 2008
Te	st Requested	:	Selected test(s) as requested by client.
Tes	st Method	:	Please refer to next page(s).
Tes	st Results	:	Please refer to next page(s).

Signed for and on behalf of SGS-CSTC Ltd.

Huang Fang, Sunny Sr. Engineer

This Test Report is issued by the Company subject to its General Conditions of Service punted overleaf or evaluable on request and accessible the results shown in the test report refer only to the sample, indemnification and jurisdictional issues defined therein. Unless otherwise stated performing of the Contrany. Any unauthorized alteration, forgery or faisification of the content or appearance of this report is unlawful and any state of the content of the family of the sample, so tested. This test report cannot be reproduced, except in full, without prior written and the content or appearance of this report is unlawful and any state of the content of appearance of this report is unlawful and any state of the content of the sample of the sample.

1984m/RadSEETICHERCONFECTION - 1984年11月1日13年11日日 中国・广州・经济技术开发区科学城科珠路198号 邮编: 510663

GAZ () 1 (86-20) 62165555 (1 (86-20) 82076125 1 (86-20) 82155555 ((86-20) 82075125

GZCM 1 622677 e sgs.china@sgs.com

SGS	* *	i est	
Test Report	No. CANEC0800459703	Date: 01 Mar 2008	Page 2 of 6
Test Results:	•		
ID for specimen 1	CAN08-004597 002		

Heavy m	etal(s)
---------	---------

Description for specimen 1

lest Item(s)	Unit	Test Method (Reference)	-	
Cadmium (Cd)			Result	MDL
• •	mg/kg	IEC 62321/2nd CDV (111/95/CDV), ICP-OES		2
Lead (Pb)	mg/kg	IEC 62321/2nd CDV (111/95/CDV), ICP-OES	N.D.	2
Mercury (Hg)	mg/kg	IEC 62321/2nd CDV (111/95/CDV). ICP-OES	N.D.	_
Hexavalent Chromium (CrVI) by	mg/kg		N.D.	2.
alkaline extraction	шу/к <u>с</u>	IEC 62321/2nd CDV (111/95/CDV), UV-Vis	N.D.	2
e danne esta ababin				

: CAN08-004597.003

: Black plastic '

Note:

1. mg/kg = ppm

2. N.D. = Not Detected (< MDL)

3. MDL = Method Detection Limit

Flame retardant

Test Item(s)	Unit	Test Method (Reference)	Result	MDL
Sum of PBBs	mg/kg	_		
Monobromobiphenyl	mg/kg	IEC 62321/2nd CDV (111/95/CDV). GC-MS	N.D. N.D.	- 5
Dibromobiphenyl	mg/kg	IEC 62321/2nd CDV (111/95/CDV), GC-MS	N.D.	5
Tribromobiphenyl	mg/kg	IEC 62321/2nd CDV (111/95/CDV). GC-MS	N.D.	5
Tetrabromobiphenyl	mg/kg	IEC 62321/2nd CDV (111/95/CDV), GC-MS	N.D.	5
Pentabromobiphenyl Hexabromobiphenyl	mg/kg	IEC 62321/2nd CDV (111/95/CDV), GC-MS	N.D.	5
Heptabromobiphenyl	mg/kg	IEC 62321/2nd CDV (111/95/CDV), GC-MS	N.D,	5
Octabromobiphenyl	mg/kg mg/kg	IEC 62321/2nd CDV (111/95/CDV), GC-MS	N.D.	5
Nonabromobiphenyl	mg/kg	IEC 62321/2nd CDV (111/95/CDV), GC-MS	N.D.	5
Decabromobiphenyl	mg/kg	IEC 62321/2nd CDV (111/95/CDV), GC-MS	N.D.	5
Sum of PBDEs	mg/kg	IEC 62321/2nd CDV (111/95/CDV), GC-MS	N.D.	5
Monobromodiphenyl ether	mg/kg	EC 62321/2nd CDV (111/05/00)	N.D.	-
Dibromodiphenyl ether	mg/kg	IEC 62321/2nd CDV (111/95/CDV), GC-MS IEC 62321/2nd CDV (111/95/CDV), GC-MS	N.D.	5
Tribromodiphenyl ether	mg/kg	IEC 62321/2nd CDV (111/95/CDV), GC-MS	N.D.	5
Tetrabromodiphenyl ether	mg/kg	IEC 62321/2nd CDV (111/95/CDV), GC-MS	N,D.	5
Pentabromodiphenyl ether	mg/kg	IEC 62321/2nd CDV (111/95/CDV), GC-MS	N.D.	5
Hexabromodiphenyl ether	mg/kg	IEC 62321/2nd CDV (111/95/CDV) GC-MS	N.D. N.D.	5
Heptabromodiphenyl ether	mg/kg	EC 62321/2nd CDV (111/95/CDV), GC-MS	N.D.	5 5
Octabromodiphenyl ether	mg/kg	IEC 62321/2nd CDV (111/95/CDV) GC-MS	N.D.	5 5
Nonabromodiphenyl ether Decabromodiphenyl ether	mg/kg	12C-62321/2nd CDV (111/95/CDV), GC-MS	N.D.	
	mg/kg	IEC 62321/2nd CDV (111/95/CDV), GC-MS	N.D.	5

a issued by the Company subject to its General Conditions of Service printed overleaf or available on request and accessible the ution is drawn to the limitations of itability, indemnification and jurisdictional issues defined therein. Unless otherwise stated in the test report refer only to the sample(s) tested. This test report cannot be reproduced, except in full, without prior written Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this report is unlawful and proseduted to the fullest extent of the law. the ults shown in

p

199 Kedu Kails GENTED (For Regime External Prices), Concores Desig Gergen, Oris E. 1965 中国,广张、经济技术开注还部学家联际港195号 新潮:310653

V. 1622578 www.cn.sgs.com 1 (86-20) 82075125 1 (86-20) 82075125 6 sgs.china@sgs.com

Member of the SGS Group (SGS SA)

: 86-21-821685555

. ,00-00, 62155565

No. CANEC0800459703

Date: 01 Mar 2008

Page 3 of 6

Note:

- 1. mg/kg = ppm
- 2. N.D. = Not Detected (< MDL)
- 3. MDL = Method Detection Limit

4. "-" = Not regulated

PAHs (Polynuclear Aromatic Hydrocarbons)

Test Item(s)	Unit	Test Method (Reference)	Result	MDL
Naphthalene (NAP)	mg/kg	EPA 8270D: 2006, GC-MS	. 0.3	0.1
Acenaphthylene (ANY)	mg/kg	EPA 8270D: 2006, GC-MS	0.2	0.1
Acenaphthene (ANA)	mg/kg	EPA 8270D: 2006, GC-MS	N.D.	0.1
Fluorene (FLU)	mg/kg	EPA 8270D: 2006, GC-MS	0.1	0.1
Phenanthrene (PHE)	mg/kg	EPA 8270D: 2006, GC-MS	0.2	0.1
Anthracene (ANT)	mg/kg	EPA 8270D: 2006, GC-MS	N.D.	0.1
Fluoranthene (FLT)	mg/kg	EPA 8270D: 2006, GC-MS	0.3	0.1
Pyrene (PYR)	mg/kg	EPA 8270D: 2006, GC-MS	0.7	0.1
Benz(a)anthracene (BaA)	mg/kg	EPA 8270D: 2006, GC-MS	N.D.	0.1
Chrysene (CHR)	mg/kg	EPA 8270D: 2006, GC-MS	N.D.	0.1
Benzo(b)fluoranthene (BbF)	mg/kg	EPA 8270D: 2006, GC-MS	N.D.	0.1
Benzo(k)fluoranthene (BkF)	mg/kg	EPA 8270D: 2006, GC-MS	N.D.	0.1
Benzo(a)pyrene (BaP)	mg/kg	EPA 8270D: 2006, GC-MS	N.D.	0.1
Indeno(1,2,3-cd)pyrene (IPY)	mg/kg	EPA 8270D: 2006, GC-MS	N.D.	0.1
Dibenz(a,h)anthracene (DBA)	mg/kg	EPA 8270D: 2006, GC-MS	N.D.	0.1
Benzo(g,h,i)perylene (BPE)	mg/kg	EPA 8270D: 2006, GC-MS	N.D.	0.1
2-Methy!naphthalene (2-MNP)*	mg/kg	EPA 8270D: 2006, GC-MS	1.8	0.1
1-Methylnaphthalene (1-MNP)*	mg/kg	EPA 8270D: 2006, GC-MS	0.6	0.1
Total PAHs	mg/kg	-	Min.1.8	-

Note:

- 1. mg/kg ≕ ppm
- 2. N.D. = Not Detected (< MDL)
- 3. MDL = Method Detection Limit

4. LFGB Requirement:

	For products of skin contact>30s:	the maximum	permissible limit	t of the total PAH	is is 10 mg/kg ar	nd that of	
	Berizo(a)pyrene (BaP) is 1 mg/kg.						
	For products of skin contact<30s:	the maximum	permissible limit	of the total PAH	s is 200 ma/ka a	nd that	
	of Benzo(a)pyrene (BaP) is 20 mg	/kg.					
5.	* These PAHs are not added up	-					
; Te	SUPERSIES issued by the Company subject	t to its General Co	anditions of Service r	Drinted overlasi or a	veilable on requests	and accorde	њ

This Association of the company subject tens General Conditions of Service primed overlear of available of rockets and accounting of service primed overlear of available of rockets and accounting stated to the imitations of service primed overlear of available of rockets and accounting stated to the imitations of service primed overlear of available of rockets and accounting stated stated accounting stated to the sample stated. This test report cannot be reproduced, except in full, without prior written its of the Content of appearance of this report is unlawful and iteration of the content or appearance of this report is unlawful and there is a stated to the fullest extent of the law. at wu the

p∈ of

Ч

Förfer Garcia, Fizional Samor, Designer, Jeon Saegon, Dra 510665 1 88-20 82165555 ¹17時時間198号 封給された 「广州・経済技大モークない : (RE-20, 82155566

Member of the SGS Group (SGS SA)

1 (86-20) 82075125

f (85 20) 82075126

GZCM 1 6 2 2 6 7 9 20/5125 www.cn.sgs.com

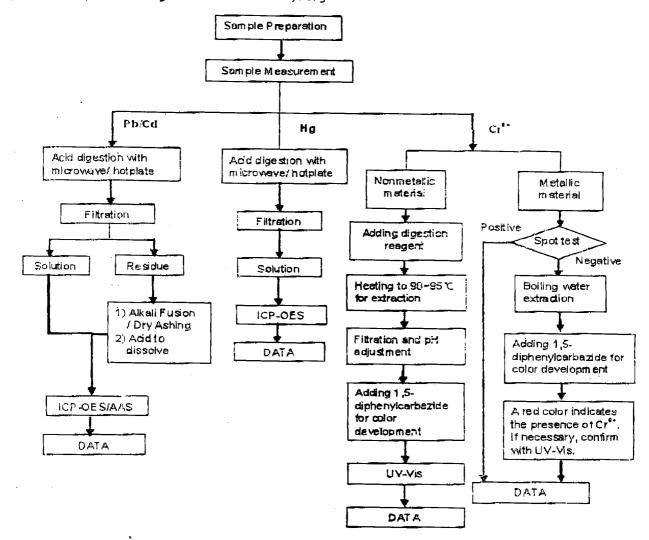
e sgs.china@sgs.com

:

ć

Test Report

No. CANEC0800459703


Date: 01 Mar 2008

Page 4 of 6

ATTACHMENTS

Testing Flow Chart

1) Name of the person who made measurement: David Shen 2) Name of the person in charge of measurement: Emily Feng

This Test provide issued by the Company subject to its General Conditions of Service printed overleaf or available on request and accessible at www.sest.com. All otion is drawn to the limitations of liability, indemnification and jurisdictional issues defined therein. Unless otherwise stated the results shown in the test report refer only to the sample(s) tested. This test report cannot be reproduced, except in full, without prior written perfussion of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this report is unlawful and offenders the resonance of the fullest extent of the law

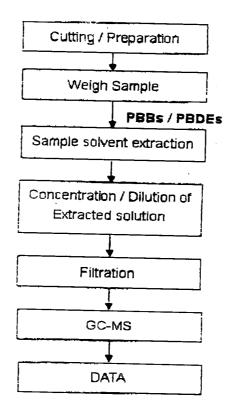
1	₹ <i>5</i> //					GZCM	1622680
Ŋ	testis hotmos batel for the	ŧ	198 Kestu Razi SCENTED' For Stargen, Forman i Forman, Lensar on Lasti, Storgen, Dira 51, 1963	:	58-21 62155555	f (86-20) 82075125	www.cn.\$g\$,com
		1	中国、广州、远济技术会会区科学校科技部194番 動論語は1943	:	SE-211 02155555	(\$6-20) 82075125	e sgs.china@sgs.com
1	and the second second second second second second	_!_					

Member of the SGS Group (SGS SA)

898.08¹

ATTACHMENTS

No. CANEC0800459703


Date: 01 Mar 2008

Page 5 of 6

Testing Flow Chart

1) Name of the person who made measurement: Flona Xu

2) Name of the person in charge of measurement: Nina Wu

This Test Report is issued by the Company subject to its General Conditions of Service printed overleaf or available on request and accessible at www.sub.com. All out on is drawn to the limitations of liability, indemnification and jurisdictional issues defined therein. Unless otherwise stated the walls shown in the test report refer only to the sample(s) tested. This test report sample be reproduced, except in full, without prior written performing of the Company. Any unauthorized a teration, forgery or falsification of the content or social and of this report is unlawful and offenders under the fullest extent of the law.

增新時級SORTHELETE 於「TERNS AVENTED RETIDET STR 中国、广州●经济技术班发区科学取科球路198号 邮编:510663

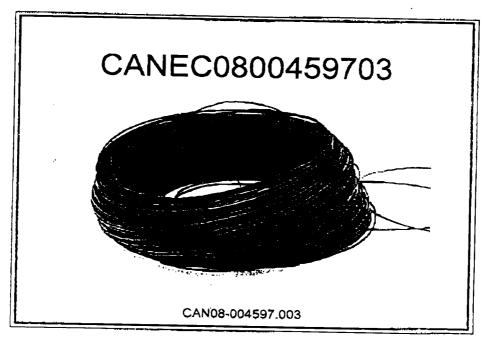
: 35-20 82155555 (86-20) 82075125 ((85-20) 82155555 (86-20) 62075125

Mar. 11 2008 15:39

Member of the SGS Group (SGS SA)

3 5 2 2 5 8 1 www.cn.sgis.com

o sgs china@sgs.com



Sample photo:

No. CANEC0800459703

0600459703 Date: 01 Mar 2008 Pa

Page:6 of 6

SGS authenticate the photo on original report only *** End of Report ***

This Task topped is issued by the Company subject to its General Conditions of Service printed overleaf or available on request and accessible at www.ges.com. Attention is drawn to the limitations of lability, indemnification and jurisdictions: issues defined therein. Unless otherwise stated the results shown in the test report refer only to the sample(s) tested. This test report cannot be reproduced, except in full, without prior written perfussion of the Company. Any unauthorized alteration, forgery or falsification of the content of subvarance of this report is unlawful and offenders of the posted to the fullest extent of the law.

Member of the SGS Group (SGS SA)

1622682 www.cn.sgs.com

e_sgs.china@sgs.com